
Best Practice with Structured Requirements
by Fergal McGovern, Product Manager, Optimal Trace Compuware Corporation

W
H

IT
E

PA
P

ER

Audience:

>> You are a business analyst and find it difficult to bridge the

communications gap between business and IT users. This is

causing misunderstandings about project scope and deliverables,

often resulting in unmet expectations and, ultimately, project

failure.

>> You are a project manager and have recognized the need to

adopt a more controlled and traceable approach to project

development and scope management.

>> You are an architect or QA lead and have recognized that your

current process is sub-optimal. You may have already deployed

a UML modeling solution, but it has proven difficult in terms

of its deployment and the promised improvements have not

materialized.

>> You may have read some articles about requirements-driven

software and the merits of the approach appear compelling, but

you are still not quite sure about where to go from here.

Introduction

Analysts report poor requirements management accounts for as

much as 71 percent of software project failures. The main cause

is the gap between (a) what the business team wants and how it

communicates this, and (b) what IT understands and delivers.

No matter how good a project development environment is, if

the requirements captured in the first place are inaccurate or

incomplete, then the project is destined for failure. The same

fate awaits project plans that are structured around passive and

unmeasurable module and task definitions rather than measurable,

business-defined goals. It sounds obvious, but the current rate of

project failure demonstrates that this is plainly a difficult task.

The main challenge with a software project is that the end result

is, essentially, invisible. It is not like building a house, where design

anomalies are often clearly visible. Communication in technical

projects can be problematic, both between the customer/user and

the business analyst and between the business analyst and the

development/QA team. As a result, there is often inaccurate or poor

understanding of the project scope amongst stakeholders. Project

estimation relies on “gut feel” and there is often an overreliance

on having particular technical people involved. Similarly, project

progress cannot be measured easily or accurately due to inaccessible

or overly technical milestones. This increased risk to the project

often results in cost overruns, late delivery or, worst of all, outright

failure to deliver the system required.

A structured approach to requirements capture and management

resolves these problems and is the only way all stakeholders can

be confident that all requirements have been understood and

incorporated into the project plan.

2

ATM Requirements

1. The system shall not allow
customers to request money
unless they provide a valid PIN
number.

2. The system shall print a receipt
for each transaction.

3. The system shall provide the
customer with a list of options
to withdraw cash.

4. The system shall verify the
customer has enough money
in their account to cover the
requested withdrawal amount.

5. Users will be notified that
receipts cannot be printed, and
will be asked if they want to
proceed.

6. The system shall only allow
withdrawals in the amount
specified by the ATM
configuration setting.

7. The system shall have the
ability to eject the customer’s
bank card.

8. The system will provide the
customer with an option to print
a receipt.

9. The system shall dispense cash
if the account has sufficient
funds.

10. The ATM shall return the
card upon completion of the
transaction.

11. The system must be connected
to the bank system to enable a
transaction.

Ambiguous
Requirements

Out of
Sequence

Traditional requirements for an ATM project.

Why traditional requirements techniques are not enough

The role of accurate and complete requirements in project success

is not a secret. The problem is traditional requirement-gathering

methodologies are failing. Why?

>> They usually fail to describe what the system needs to do from

a user’s perspective, adding to the difficulty of communicating

the project scope and deliverables. This is because they tend to

focus on certain desired high-level end results, augmented with

sometimes quite detailed and interspersed technical requirements.

>> Traditional requirements also tend to be independent of

one another. In other words, without being tied together by

interdependencies and connections, the “story” of what the

system does gets lost.

>> They are hard to translate into designs. Since there is no story,

developers have to guess what the system is really supposed to do.

>> They are hard to test. Again, the absence of a complete “story”

of how the system will be used means testers and QA have

nothing to go on that will help them ensure the system will

deliver as it should.

The example at right details traditional requirements for an ATM

(Automated Teller Machine) project, demonstrating how traditional

requirements gathering can create risk in a project.

The main problem here is the requirements are not sufficiently

specific or business-oriented, incomplete or ordered in a way that

makes identifying duplication or gaps difficult.

On the other hand, Structured Requirements bring a logical flow

to the expression of the system’s objectives, offering a step-by-step

sequential account of everything that needs to happen in the system

that all stakeholders can contribute to and understand. By their

nature, they make it easier to identify gaps and interdependencies.

Structured Requirements capture ensures a complete and accurate

set of system needs is at the core of project planning.

The impact of a Structured Requirements approach on the same

ATM example is shown here:

Fine-grained,
atomic
descriptions of
behavior. Lacks
a descriptive
flow that
delivers value
to users!

Duplicate
Requirements

3

Structured Requirements ensure completeness, communicability and

depth in a way that traditional or flat requirements cannot because they:

>> describe how the system is used in a particular way by one or

more users to achieve a desired result

>> provide a complete “story”-like description of how the

system should behave that is easy to understand by business

stakeholders and members of the development team alike

>> are expressed in plain language, not specialized notations, so

that everyone can understand, offering a common way for all

members of the project team to communicate about what the

system must do

>> express desired behavior, providing a more natural and complete

way of describing what the users want to achieve and what the

system needs to do in response.

Structured Requirements enable full traceability throughout the life

cycle because they form the core of the project planning process,

connecting the project plan with business objectives. In the process,

they drive design specifications (flowcharts, UML models, etc.),

user interface design (wire-frames, screenshots and storyboards), test

planning (composed of test cases) and code modules (COBOL, Java,

C++, etc.). Structured Requirements yield:

>> a better channel of communication to the customer during

analysis and build phases, for higher levels of customer

satisfaction

>> more accurate task and project estimation due to more complete

and accurate requirements capture

>> visibility into “high-risk” architectural issues earlier in the build

phase, allowing you to take pre-emptive action

>> a much improved ability to adjust for feature modification and

reprioritization mid-cycle without jeopardizing the timeline.

This commonly occurs in the event of a resourcing review (for

example, through attrition or budget reallocations) or business

reprioritization of features.

The net effect is a more controlled build cycle, reducing risk and cost.

ATM Requirements

Preconditions

1. The bank customer must possess a bank card.

2. The network connection to the bank system, must

be active.

3. The system must have at least some cash that can

be dispensed.

Basic Flow

1. The Structured Requirement begins when the

customer inserts a bank card into the card reader

on the ATM.

2. The system reads the bank card information from

the card.

3. Include requirement Authenticate Customer to

authenticate the use of the bank card by the individual

using the machine.

4. The system displays the service options that are

currently available on the machine.

5. The customer selects to withdraw cash.

6. The system prompts for the amount to be withdrawn

by displaying the list of standard withdrawal

amounts.

7. The customer selects an amount to be withdrawn.

8. Perform “Sub-flow Assess Funds on Hand.”

9. Perform “Sub-flow Conduct Withdrawal.”

10. The system dispenses the requested amount

to the customer.

11. The system ejects the customer’s bank card.

12. The customer takes bank card from the machine.

13. The system records a transaction log entry for

the withdrawal.

The Structured Requirement ends.

A Structured Requirements approach applied to the ATM project.

4

Structured and non-functional requirements

What exactly is a Structured Requirement?

Structured Requirements describe an objective or goal of a system.

They are generated with the active involvement of the business

user. Since they clearly reflect the behavior of the system in an

understandable logical flow, it is easy for the user to understand

and verify the process and ensure nothing is omitted. Structured

Requirements also enable system architects and designers to

understand the system objectives from the customer’s point of view.

They define the boundary and scope of the system, making it easy to

determine what is in and what is out, accelerating customer buy-in

and reducing disputes.

A Structured Requirement is a single “strand” of functionality

that the system will deliver. When writing the specifications for a

project, individual Structured Requirements will be formulated to

satisfy each goal identified by the business users. These requirements

will always be verb- or action-oriented and will strive to achieve

a goal (Browse Orders, Purchase Goods, Login to System, Create/

Edit Orders, etc.). Therefore, a complete collection of Structured

Requirements will express the entire functional behavior of a system.

Non-functional requirements

There are other system requirements that do not neatly fall into

the Structured Requirements category. These are non-functional

requirements (NFRs). These non-structured requirements generally

fall into two categories: qualities, expressing aspects that the system

must satisfy such as a number of concurrent users, security, etc.;

and constraints, expressing “hard” realities such as the type of

infrastructure the system must run on, coding language required,

browser versions to be supported, etc. Typical NFRs include

availability, performance, scalability, maintainability, manageability,

security and flexibility. NFRs can either be associated with

individual Structured Requirements or can be defined system-wide

as part of the overall project.

What happens without Structured Requirements?

A conventionally facilitated session uses white boards and giant

Post-it notes to describe a requirement. These are modified

with strikethroughs and arrows pointing to repositioned steps

posted on all walls of the meeting room. In this scenario, focus

from requirement to requirement is achieved by referring to

locations around the room—not the most streamlined way of

managing requirements! Interdependencies between requirements

are extremely difficult to manage and control in this scenario.

Documentation is then synthesized based on a translation of

scribbled notes, moderator recollection and refactoring of the Post-

its. The business user is then expected to sign off on a document

that is unfamiliar to them and often uses cryptic, technology-

oriented notation.

In the absence of a Structured Requirements process, the

management of requirements, and of the project as whole, becomes

extremely difficult. For example, the graphic in Figure 1 shows a

sample project repository containing details of a number of projects

at “My Company.” This is taken from a real-life example that

shows how a poorly managed requirements-gathering process can

make life difficult for everyone. Excel spreadsheets, graphics, Word

documents and e-mails associated with different projects are mixed

together with no consistent naming convention. Irregular spacing

in the file names means the folder contents can’t even be sorted

based on project name. Equally, the e-mail subject line is the default

file name, so it isn’t clear to which project the e-mails necessarily

refer. Tracking back through this mess to identify what has been

agreed for each project is difficult enough. Identifying gaps, non-

functional specifications and other basic requirements for the system

in any complete way is made extremely complex. Even storing these

artifacts in a versioning system will not ease the lack of transparency.

Although it might support better management, this course of

action will not provide any greater degree of connectedness or

transparency into the quality/applicability of the requirements. This

is requirements hell and, in truth, the whole project is hurting.

Figure 1: Chaotic storage of project data.

5

Advantages for project stakeholders

Business-based Structured Requirements as captured by Compuware

Optimal Trace describe the functional, or behavioral, requirements

of the system. These then feed into the design, development, testing,

documentation and overall communication and delivery of the

system. All stakeholders benefit: analysts, architects, user interface

designers, developers, managers (project and product), testers,

technical writers and, particularly, the business user.

Business users

Business users benefit by being included in the requirements-

gathering process in an interactive manner. Non-technical language

makes the process more understandable. Requirements are presented

in step-based sequential tasks represented in a flow diagram that is

complete, understandable and leaves no room for misinterpretation.

Optimal Trace focuses the business user on the requirement at

hand and can represent every requirement in the format most easily

understood. The resulting documentation represents the exact

content of input meetings, building trust and facilitating sign-off by

stakeholders.

Business analysts

Structured Requirements provide analysts easy visualization of

the steps involved in delivering on the business users’ needs. By

representing the system using natural language and graphics, in

multiple document formats, Structured Requirements help all

stakeholders feel confident their needs are being met. You can elicit

multiple layers of abstraction and document them in an easy-to-

understand format. You can explore system behavior by using simple,

but deep, representations of the chain of events to be followed,

ensuring completeness and early buy-in. This is a crucial factor

in avoiding late-cycle changes. Similarly, adopting a Structured

Requirements approach helps make modifications in a controlled

way, ensuring all interdependencies are correctly managed. The

business analyst can sort and prioritize project data based on metrics

that make sense to each stakeholder, fast-tracking acceptance and

validation. Business analysts can also use Structured Requirements

to support collaborative working and enable stakeholders with a

particular focus to isolate the streams of requirements of particular

interest to them.

Project managers

Structured Requirements help project managers plan more

effectively. You can group deliverables functionally, allowing delivery

of full increments of functionality over time. These can optionally

be delivered to the customer for verification and expectation setting,

increasing their confidence the system will be delivered on time and

in accordance with their expectations.

Project managers also benefit through enhanced scope management.

You can easily add, delete or modify requirements and flows,

understanding and managing the incremental impact of these

changes throughout the life cycle. Requirements are structured

naturally for scheduling, making it easy to map them to activities or

tasks. Structured Requirements also let you baseline a given set of

project data, making change control well-defined and transparent.

Each set of Structured Requirements represents a phase in the

consultation/requirements capture process. In the event that the

customer decides to change direction during the project, then the

earlier sets of Structured Requirements provide a verifiable “audit

trail” of project variation, enabling quantification of the extent

of change and identification of all amendments required as a

consequence.

Architects

Architects benefit through the complete identification of all of the

dependencies and alternate flows pertaining to the project, making

it easy to visualize the solution and to deliver great code that works.

All architectural elements or modifications included in the project

can be clearly associated with (or traced to) a need to support a

specific requirement or business goal. For example, a user function

that retrieves content based on multiple data objects may need to

be scaled to meet non-functional requirements such as sub-second

response time for page retrieves. Without full knowledge of page

elements and NFRs, such a design decision may be left undone.

Architecturally significant or complex elements are incorporated

early in the life cycle, enabling early resolution of architectural

problems.

Structured Requirements form a natural mechanism for identifying

initial architecture build-out. They give architects a useful

mechanism for coordinating with the project manager about

appropriate prioritization of high-risk aspects of a system as well as

customer-critical functionality. Structured Requirements can map

directly into the design and test environments, ensuring a seamless

translation from business goals to requirements to development, test

and delivery.

UI designers

Designers and those involved with user interfaces benefit by being

able to easily represent the information required in screens, look-

and-feel and any storyboards that form the dialog between the

6

system and the end user. Such artifacts can be associated with any

relevant requirements so business users get an early impression of

how the customer will experience the system.

In many cases, this ability to connect business needs, requirements

and end-user experience avoids the need for time-consuming

and problematic prototyping or simulation. (See associated

Optimal Trace white paper “Show and Tell.”) Generating project

documentation in formats that are understandable to all stakeholders

and include screenshots and other artifacts helps speed stakeholder

buy-in and project validation.

Developers

Developers benefit since their implementation goals are

directly molded from the stakeholders’ expectations. Structured

Requirements can be grouped collectively, mapped to interaction

diagrams and easily refined into code. Ensuring every single piece of

code developed is driven by an authentic business goal, eliminates

the risk of scope creep and over-development. Similarly, linking the

coding/development process to specific goals enhances the ability to

reuse code (e.g., code for “Browse Orders” may well be reusable for

similar projects in the future).

QA test leads

QA and test leads benefit from complete clarity on the business

requirements driving the project. Structured Requirements describe

exactly how the system needs to behave, giving the perfect initial

baseline for test plan development and documentation (whether

Pre-Conditions -> Environment state pre-test; Flow of Events ->

description of inputs/outputs or Post Conditions -> Environment

state post-test). As a result, QA and test personnel can improve

quality and ensure the final product actually matches the original

business goals. Associating elements like NFRs, custom properties,

alternate scenarios, etc. directly into the test plan helps highlight

suspect links as well as vital performance and operational

requirements early in the life cycle. You can take action to ensure

project completeness at the earliest possible stage.

Structured Requirements, therefore, offer definitive coverage of all

requirements through to QA and test, ensuring testing and QA focus

on the original business needs.

Technical writers

Technical writers benefit because Structured Requirements

provide the scope of feature documentation requirements. This

gives a natural organization for any documentation associated

with the project, providing goal-based descriptions, system states

for each requirement and user interactions described in text. The

automatic generation of project documentation based on Structured

Requirements, with Optimal Trace, eases the presentation and

communication of system functionality from the start. Technical

writing is easier, and documentation is more complete.

Summary

Structured Requirements, as enabled by Optimal Trace, bring a

whole new level of accountability, efficiency and reliability to the

management and communication of projects. This approach is vital

for success in project delivery, fulfillment of customer expectations

and successful management of resources and compliance.

Structured requirements throughout the life cycle
Analysis

We know IT projects are usually driven by a business need:

increase efficiency, support a sales channel, centralize a distributed

business activity, etc. Since Structured Requirements focus on real,

measurable business requirements emphasizing goals and objectives,

they offer a real opportunity to link project delivery with the original

business drivers of the project, addressing the single biggest cause of

project failure in the process.

The truth is even with the best possible project development

environment, the critical success factor will always be accuracy

and completeness in capturing business requirements and goals and

tracing them to the associated details. Let’s take a look at how to get

this right.

Engage with the customer or business sponsor early

It sounds obvious, but it is important to make sure the business

sponsor or customer is involved at the outset in clearly stating the

business goals for the project. This person needs to have a clear

view of the ultimate objectives of the project and what a successful

outcome is, especially from the user’s perspective. They also need

to make sure all business-related stakeholders are available to

participate in the initial scoping and analysis phase.

Specify the main high-level goals clearly

Structured Requirements help the business stakeholders express their

goals in plain language and in increasing detail during the course of the

analysis. This clarifies the overall scope and depth of the project in a

way that everyone can understand. It is vital the business stakeholders

understand their roles in defining the project at this stage.

The business sponsor and his/her team work with the business

analyst to identify the primary goals of the proposed system. Most

project initiatives have very high-level business needs or drivers,

for example, sell more product through a 24x7 delivery mechanism,

7

improve customer loyalty by increasing usability, speed delivery times

for the invoicing system, etc. It is important to clarify these drivers

before sign-off is agreed at the executive level. These primary drivers

also are typically reflected as the “Project Vision” and tend not to

change after project inception. They are, however, still too high-

level to form a meaningful contract that can drive an application

initiative once it begins.

Handing these kinds of drivers to a development team will clearly

not work as they lack sufficient detail. Without being broken down

into more specific goals and objectives, they can frequently lead to

over-engineered frameworks capable of handling only very broad

business scenarios. This often reflects a dynamic in the project

team that is “technical-led.” The lack of traceable detail in the

requirements and the lack of visibility undermine confidence in

meeting the specific business need.

Identifying and relating the primary drivers to a more detailed and

specific level of goals is therefore critical.

It is this next level of goals that forms the basis, or “framework,”

for building out a full set of detailed and operational system

requirements. This is where to focus.

What do such goals look like? Assuming the business has a driver

to “Make the ordering process more efficient,” we might have an

associated set of goals:

>> Browse orders

>> Create new order

>> Send invoice

>> Setup promotion code

>> Cancel/delete order

>> Ship to customer

>> and so on.

You can view these goals as “contractual” obligations that the system

must fulfill from an end-user perspective. Indeed, looking at the

proposed system from the viewpoint of the end user is an extremely

effective way of arriving at the first set of appropriate goals. Each

goal becomes a single Structured Requirement and, within Optimal

Trace, these goals appear in the Tree area. (See Figure 2.)

Figure 2:
Good quality business drivers and goals.

8

Ask yourself what the system must offer a user and this will quickly

generate an initial set of Structured Requirements. If the system

must be capable of sending an invoice to the customer, then we have

a Structured Requirement called “Send Invoice.”

What about systems that have no direct user interaction? Many

system initiatives are infrastructure-oriented projects involving the

need to “join up” or “integrate” existing back-office systems. Often,

these initiatives are fulfilled by a service-oriented architecture

providing value to third-party systems. Regardless of implementation

architecture, the central tenet of the structured approach still holds

true in this non-user-interactive context. For example, “Calculate

State Tax for Inter-state Shipments” given with some parameters

becomes a contractual obligation and may be satisfied in a service-

oriented world by a relevant interface. It is critical, therefore,

to understand the business rules and details of the Structured

Requirement and to integrate them into the requirement itself.

Collaborating in stakeholder analysis sessions: To help

elaborate what is needed during the analysis phase, you

can use Optimal Trace on a laptop in a Joint Application

Development session with business stakeholders or domain

experts. This helps clarify from the outset the highest-level

objectives that the system needs to satisfy, in other words,

the business drivers and goals. In this context, developing

a project in Optimal Trace and projecting the flows onto a

screen is an effective way of establishing agreement amongst a

team and working through any issues or clarifications.

Add detail to the prioritized Structured Requirements

Having identified the business drivers and their associated high-

level goals, we now have the basis for building detailed Structured

Requirements for the project. By taking each high-level goal and

breaking it down into all of its associated flows, with each flow

comprising a group of constituent steps, a set of complete Structured

Requirements will emerge. In essence, each fully fleshed out

Structured Requirement is a collection of related flows, each directed

to achieve the specific goal or part of a goal.

Initially, you can focus on a few of the main goals, considering two

things: business priority and technical difficulty. These factors tell us

how to prioritize correctly.

Within Optimal Trace, you can stamp each Structured Requirement

with the appropriate values for “business priority” and “technical

risk.” If working in a more agile world, you may also consider using

the field “increment number” at the requirement level to specify the

increment of delivery for that goal. (See Figure 3.)

Figure 3: Custom properties in Optimal Trace.

9

For example, assuming we have deemed “Creation and Editing of

Orders” to be a high-priority, we might further flesh out that goal

with a sequence of steps such as:

>> Check if logged in

>> Provide billing address

>> Confirm product and quantity

>> Calculate total cost including tax

>> Validate information (quantity greater than zero, for instance)

>> Provide payment instructions

>> and so on.

In one sense, this set of steps constitutes a dialogue between a user

and a system. Figure 4 reflects the dialogue represented in Optimal

Trace.

Through direct association with the high-level system or business-

user goals and expression in action-based language, you can easily

communicate the Structured Requirements to the business and

technical stakeholders. These are your first Structured Requirements.

You can see these early stages of system analysis are mission-critical.

You have specified the initial high-level business goals and expanded

each into a series of Structured Requirements. These in turn are

fleshed out and broken down into sets of steps.

Applying this process to every high-level goal and drilling down in

increasing detail through every strand of activity required by the

system, you construct a complete and accurate picture of everything

the system needs to do.

Figure 4:
Main project page in
Optimal Trace.

10

Consider alternative flows

What about situations where things may not happen as planned

in the main flow? Usually, for each goal, there may be a number of

points where a deviation in the story can occur. These deviations

may result in completion of the goal or failure to achieve it.

You need to be prepared for commonly overlooked scenarios like:

>> What if the quantity requested is zero?

>> What if the product is out of stock?

>> What if the log file exceeds the disk size?

Considering alternative scenarios for different or unusual situations

often serves as an early warning system for lack of completeness

in the requirements. Some alternative scenarios may be business-

oriented (e.g., “product out of stock”) while some may be more

technical (e.g., “disk space exceeded”). Both types of scenarios

should be fully considered, resulting in a completed contract for each

goal.

Each alternative scenario or flow should be outlined and connected

via a branch to the related step condition for the scenario. For

example, if the quantity of items ordered is zero, branching from the

step “Validate Information” might require the system to raise a query

to Accounts highlighting an error in the records.

Figure 5 shows how it might look in Optimal Trace.

Note that alternate scenarios/flows may not end in success, since

some scenarios may not meet the objective of the Structured

Requirement. It is critical these are documented, as the system needs

to take these into account. If they are not accounted for, scope can

expand and project overruns can occur.

Address performance and quality characteristics

It is generally at this stage you should consider the NFRs. These

relate to the qualities and constraints of the system and can relate

to specific Structured Requirements or to the system as a whole.

Issues such as availability, performance, scalability, maintainability,

manageability, security, flexibility, etc. are managed through NFRs,

and they are a vital part of the initial project scoping.

Ask business stakeholders questions relating to the overall

performance of the system. What is the expected user load? What

about speed of response when issuing the invoice?

Such questions can be difficult to answer, especially for business-

facing stakeholders, but leaving them unanswered introduces

risk. If the business cannot say how many users are expected to

simultaneously create orders, then we have a significant hole in our

requirements project. Factors that may come into play during the

lifespan of the system also need to be taken into account as much as

possible. Not considering expected system qualities such as scaling

projections at the outset can lead to high-risk and non-scalable

systems. The bottom line is greater business risk.

Figure 5:
Alternate flows in
Optimal Trace.

11

In Optimal Trace, you can include the non-functional requirements

associated with the structured requirement by highlighting the

requirement in question and entering appropriately. If you wish, you

can categorize the specific NFR as either performance, legal, etc. by

using the “type” column. This is a standard column in the “Standard

Software Development” template that ships with Optimal Trace.

You can then use a query to filter the project at any time for any

performance requirements. If you are the system architect and

receive no NFRs with your requirements, then it is vital to get

clarity from the business analyst on what the business needs and all

resulting system requirements. Visibility at this level is critical.

Get customer sign-off and baseline the project

At this stage, you need to get sign-off from the customer.

Generate the project documentation in Microsoft Word and create a

project baseline. Baselines are useful as they:

>> provide a clear account of what exactly was agreed upon with the

customer

>> give access to any changes that occur, whether they originate

from the business or the technical side of the house.

The end result of this detailed work is a full set of project data that

outlines all steps, branches, alternate flows, qualities and constraints.

Screenshots and graphics can also be attached to the project. The

result: Business stakeholders get a comprehensive account of the

project that reflects the desired customer experience of the system

mapped from the business goals. Optimal Trace can present this

project data in multiple editable formats. Business stakeholders can

see their requirements clearly reflected in the project plan and sign-

off is easier and quicker.

Figure 6:
Categorized non-functional
requirements in Optimal Trace.

12

Do’s and don’ts of Structured Requirements

Do use verbs—goal-based
>> Requirements are always active and verb-oriented.

>> They are associated with a system goal.

>> Write active requirements that have verbs. For example:
“uc23: Personalize Content” rather than “uc23:
Personalization.”

>> Thus the objective or goal of this requirement is to allow
the user to personalize the content of the web page.

Do use definitive language—avoid fuzzy language
>> Never use phrases such as: “the system might allow for,”

“xyz functionality may be provided,” “we may consider
providing,” etc.

>> Language must be definitive and unambiguous. If in
doubt, place any ambiguous statements in the “open
issues” area rather than in the requirement. Once resolved,
it should be either in or out of scope and the requirements
updated accordingly.

Do use structured narrative—keep the context visible, the
value to the user clear.
>> Compare flat paragraphs:

“The order entry system has an interface to a back-end
system and a terminal. It computes and displays the sum
of the order items’ cost...”

>> With structured narrative:
“The orderer (system or an entry person) identifies the
name of the customer and the items on the order. The
system displays the cost of the total order. If the items are
in stock and the client has sufficient credit, ...”

In this example, you can see the flat paragraphs just give a
listing of separate issues, with no real connectedness. The
paragraphs don’t represent a chain of events and certainly
don’t make it clear what exactly needs to be coded/tested/
delivered. Alternatively, the structured narrative shows the
individual steps that make up the deliverable. Each step is an
element that can be coded and tested—and even delivered
incrementally. This highlights the true benefit of Structured
Requirements: the representation of an entire project in
clear, discrete steps showing connections, dependencies
and alternate scenarios. This clearly enhances the ability to
successfully deliver a complete project.

Do express objectives in non-technical language
>> Express requirements in a structured way that is

understandable by all stakeholders.

>> Requirements are best expressed in structured English,
defined as specific steps or groups of steps within a
process.

>> For example, “build XML parsing infrastructure.” This
is understandable to your developers, but not to your
customers.

>> Whereas, “exchange purchase data with suppliers” makes
sense to customers.

Do get specific on detail
>> Specify detail—avoid late scoping surprises.

>> Specify requirement detail in as far as is possible.

>> For example, in the case of “Personalize Content,” do not
have the body of the requirement read: “The system offers
the ability to allow the user to personalize her/his web
pages.” This is open-ended and will potentially lead to
major scope creep.

>> This also makes it difficult to estimate the amount of work
required.

>> Specify exactly what you understand to be the areas that
can be personalized. For example, you might write: “The
system offers the user the ability to customize the web
pages based on: (a) Sporting interests, (b) Horoscopes or
(c) Location.”

Do avoid implementation details—no lock-in with
architecture
>> Technical detail belongs in the architecture and design

documentation. Try not to allude to, or deal directly with,
the technical detail of how the requirement will obtain its
functionality.

>> Never say how the system will achieve the requirement,
always say what the system offers. This is trickier than it
sounds.

>> If you specify it here, that means you’ve locked yourself
into a specific technical solution which subsequently may
need to be adjusted/tweaked. The requirements form the
scope portion of the contract. Any change at a later stage
will require a change in contract.

Do specify alternative scenarios/flows
>> Requirements with no alternative flows imply a perfect

world. That’s not likely in the real world. There are always
exceptional situations.

Do avoid premature design and capturing design in
Structured Requirements
>> Each requirement yields tangible observable value to an

actor.

>> Don’t over-abstract requirements.

>> It is easy for developers/technical people when first writing
requirements to over-analyze and attempt premature
“reuse.”

12

13

Common analysis questions

The following section outlines some questions that can arise during

the analysis phase.

How big should the requirements be?

The following questions will help you decide how big or small your

Structured Requirement should be:

>> If you need to create a (functional/UAT) test case for this

project, would you have to jump across many requirements to

get a meaningful user-facing test case?

>> If you are explaining the objective or business goal to a business

stakeholder, do you have to jump across many requirements to

explain the goal coherently?

>> Do many or most of your requirements just have a main path

only, with no alternative scenarios?

>> Do you have a very large number of requirements, >100, for

example?

If the answer is “yes” to one or more of these questions, then it is

highly likely you need to combine the requirements and make a

smaller number of core objectives/requirements.

What makes a good Structured Requirement?

The requirements associated with each goal must be measurable and

understandable. In short, a good requirement is a step that provides

value to a given user of the system. A second characteristic of a good

requirement is that it is verb-driven and active in voice. Specifically

the name should begin with a verb, for example, “Place Order.”

Another characteristic of a good requirement is it is not too granular

and can stand alone. For example, when defining the requirements

for an ATM, “Validate PIN” would not be considered a good

requirement as it depends on other requirements to provide value to

an external stakeholder. “Withdraw Cash” is a better requirement

to set, and “Validate PIN” would be represented as a step within the

requirement “Withdraw Cash.”

For each goal, write a simple Structured Requirement, for example,

what the goal delivers. The ideal outcome of the goal will follow

from this. This is the easiest-understood aspect of the requirement,

and other features represent refinements to this scenario. Then

capture each user’s intention and responsibility, from trigger to goal

delivery. Identify and state what information passes between them

and number each line. This results in a readable description of the

system’s function. You can also identify any qualities and constraints

associated with the scenario (the non-functional requirements) and

attach these to the scenario.

What are packages and what is the best way to package Structured

Requirements?

Within Optimal Trace, sets of Structured Requirements can be

grouped into one or more packages. Packages can be contained in

other packages and are typically used in a number of ways:

>> Identifying delivery areas for project planning

>> Identifying related business objectives associated with a given

area of the system. For instance, if building a financials system,

“Applications Receivables would likely be represented as a

package.”

How many scenarios and steps should I have for each Structured

Requirement?

In general, for a customer-facing requirement such as “Create

Trade,” a main scenario will tend to have between five and 15

steps. Additionally, there will likely be anywhere from three to 10

alternative scenarios. Questions that prompt scenarios include:

>> Are any data validation steps needed? If so, represent what

happens when the validation fails as an alternative scenario.

>> Are there different ways to achieve the goal or objective? For

example, “Browse Trades” can be done by date or by trader, etc.

These might be represented using alternative scenarios.

How do I identify gaps in scope and requirements?

Structured Requirements gathering involves breaking the project

down into individual steps. Representing the entire project as a

series of independent or connected steps with associated, alternate

Structured Requirements Guidelines

>>> Aim for approximately 30 externally facing
requirements per project for manageability. Treat
large projects as several internal projects.

>>> Each requirement should have a max of 10 or so
scenarios for manageability. Break it out into sub-
requirements if necessary.

>>> Each scenario should have at most 10 to 20
discrete steps.

>>> Estimate 2 to 4 man-weeks of pure development
time per scenario in a normal external-facing
requirement.

>>> Assume 1:1 ratio of development time to test time.

14

scenarios and branches makes it significantly easier to assess whether

everything has been included and to take any necessary action early

in the life cycle.

Optimal Trace also ships with a pre-canned Complexity and

Completeness Report that easily shows:

>> intricacy, the depth of nesting (requirements within

requirements), average number of requirements or steps per

scenario or package, etc.

>> completeness, the number of bad links, empty packages,

Structured Requirements with no alternative flows or steps, goals

with no associated non-functional requirements, etc.

How do I capture user interfaces/storyboards/wireframes?

Many systems have a visual interface that lets users interact with

the system. Ensuring developers design the user interface to directly

serve requirements is critical to project success.

Screenshots are certainly very powerful communication aids,

especially to the business. They are very focused on the user

experience and, as a consequence, there can often be a tendency to

gravitate exclusively to them while ignoring the need to consider

broader system issues. A screenshot/prototype-driven approach

that excludes critical business and operational performance rules

is a recipe for serious expectation management challenges and

a condition often described as “Prototypitis,” that is, a scenario

whereby the business likes the prototype so much that it demands

changes to it and rapid turnaround. The developers make the

changes to the prototype. The customer reviews it and demands

more changes. The “real” system never gets built. An extreme form

of this is where the “prototype” system actually goes into production,

akin to building a house with no foundations and no internal walls.

Therefore, it is vital to balance the screenshots with the appropriate

set of Structured Requirements and associated non-functional

requirements, all working together to provide a complete contract.

For each requirement that needs a user interface, attach a screenshot

or sketch of what the screen layout might look like. Make sure you

are not committing to build the user interface (or system) exactly

like this. The screenshot should be clearly annotated to reflect this

condition.

This approach avoids the need to prototype, while giving the

business user an indication of the possible look-and-feel of the

system. It is a good idea to ensure all interface “mock-ups” have been

sanctioned by the design/architect team prior to sharing them with

the users. This is important, since sharing mock-ups has the effect

of setting user expectations of final look-and-feel, whatever health

warnings have been clearly attached to the storyboards! If it emerges

that a suggested interface is unrealistic (say, for example, due to

constraints that are imposed through NFRs) then this will affect

the architecture of the system but, more importantly, will mean re-

calibrating the users’ expectations. That’s something you want to

avoid if at all possible.

In the case of very complex user interfaces, it can be useful to build a

working prototype that allows for user validation while concurrently

validating and building out the associated structured requirements.

The key is to control stakeholder expectations and have the

prototype serve the requirements rather than the other way round.

This balance is critical.

Figure 7 represents how a storyboard or screenshot gets linked to a

requirement in Optimal Trace.

Figure 7: User-interface screenshots and other artifacts can be linked to specific
requirements or the system as a whole in Optimal Trace.

15

How do I handle business rules?

Business rules mean different things to different people but can

generally be placed into a number of categories:

>> Statements of fact. In a telephone billing system, you might

state: Rule 1 - The volume discount rate is 15 percent.

Rule 2 - The number of hours after which the volume discount

applies is 20.

>> Statements of validation. In a retail banking system, you might

state: Rule 3 - A customer always has a bank account. Rule

4 - A customer has the following details: First Name, Middle

Name, Last Name, Title (one of Miss, Mr., Mrs., Other), E-mail

Address, Address 1, Address 2, City/town, State/County, ZIP/

Postal, Country.

>> Statements of quality. In a consumer-facing online ordering

system, you might state: Rule 5 - The system must support at

least 1,000 concurrent users (connections). Rule 6 - The credit

card approval process must be secure.

>> Statements of sequence. In a payments system, you might state:

Rule 7 - If the credit card payment is not authorized then notify

the retailer. Rule 8 - If payment is not received (net 60 terms)

then issue overdue notice.

In a Structured Requirements-driven approach, you represent

business rules in a project as either:

>> steps in a given requirement

>> non-functional requirements associated with a Structured

Requirement with custom property type specified as a bound

value called “Business Rule”

>> as definitions contained within a glossary or actor description

>> or as custom fields at a requirement or step level.

The chart below summarizes this:

What is the best way to capture data requirements?

Following on from the previous section, data requirements and

statements of validation are synonymous. Although we suggested

that these be stored as steps or custom properties, there are in

fact a number of alternative ways in which you can capture data

requirements.

The exact approach you choose will depend on preference and

applicability. In Optimal Trace, you can define a “data-oriented”

document profile that generates documents that look and feel much

more tabular and data-centric.

(See www.compuware.com/products/optimaltrace for online demos

and more information on document profile customization.)

Approaches for capturing data requirements

1. Dedicated data package: This approach is to have a step

with refinements to a dedicated “data” package. Each step

in the dedicated data package represents a single data field

with properties: “Label,” “Field Type,” “Field Length” and

“Mandatory.”

2. Step with custom property: This approach is where steps house

the detail with specific custom properties, for example, “Fields,”

“Labels,” “Field Types” and a “Mandatory” attribute. Each step

houses all fields.

3. Step with no custom property: Expressing all the data in the

description column only, and not leveraging step-level custom

properties at all. This is the approach used in the demo project:

“Order System - (articles).ctl” that ships with Optimal Trace.

4. Glossary: Using the glossary to specify entities and, optionally,

data definitions as custom properties at the glossary level.

Business Rule Type Representation

Statement of fact Either as a step within a requirement of a glossary/actor entry or
 as a requirement’s custom property

Statement of validation Step within a requirement or as a requirement’s custom property

Statement of quality A non-functional requirement (NFR) with category set appropriately

Statement of sequence Steps in a scenario (main alternative) within a requirement

How to represent business rules
in Structured Requirements.

16

How do I deal with existing systems?

It is not uncommon to find “brown-field” sites where current systems

require extensions or enhancements. Original documentation

for these systems may be lost or badly out of sync with the actual

deployed system. What do you do?

First, examine the way people are using the current system. This

will likely involve walking through the current system online

with existing system users and stakeholders originally involved (if

available). Document these usage flows as Structured Requirements.

Each distinct dialogue, and its objective, between the user and

the system itself becomes a discrete Structured Requirement and

each interaction as part of that dialogue becomes a step in the

requirement. Keep these requirements externally facing.

Normally, the purpose of documenting in this way is to introduce

enhancements or modifications to an existing system(s). For any

requirements that are intended to be enhanced, you should describe

all scenarios (both main and alternatives). The alternative scenarios

will typically describe exceptional situations such as “Invalid Details

Entered.”

There may well be aspects of the system that were originally

designed but are not currently used. Since we are only concerned

with extending the current system, we can safely ignore these.

Similarly, there is no need to describe in detail any requirements

that will not be affected by the planned changes. A simple

requirement with name and description suffices for these.

For those requirements that require changes, specifically identify the

steps and introduce new alternative scenarios or new requirements

that outline the intended change in behavior. These then describe

exactly the change required and form the basis for the project plan.

Iterate in the delivery cycle using collections of requirements and

scenarios needing adjustment.

Project planning and delivery

Manage customer deliveries by requirement set

Ensure the customer expects delivery of portions of the system at

a point that coincides with a finished iteration. If the customer is

anxious to review progress, let him/her have real, working pieces of

functionality. One of the key dangers with customer review cycles

is offering an initial prototype that the customer perceives to be

an actual system. The customer might want to use the prototype

now, although it is, in fact, still very much a throwaway. Avoid

this situation by delivering increments of functionality instead of

prototypes. Doing so ensures the focus remains on the ultimate

system delivery rather than on endless prototyping, in which you

never build the real system.

Plan for incremental delivery

Project planning should center on incremental delivery. Project

deliverables should be structured in terms of iterations, each

iteration corresponding to a group of Structured Requirements.

Four to eight weeks is a sensible delivery increment per iteration,

depending on the system’s overall complexity and project size. Even

in very large system developments (with project teams of 15 to

100-plus), it is always a good idea to partition the overall project

into sub-projects, each of which consists of several iterations. This

reduces risk by providing a mechanism for accessing completeness,

allowing visibility for the project manager and, if required, allowing

the project manager to de-scope or reprioritize aspects of the system

during the project life cycle.

As a rule of thumb, each project should contain three iterations.

It is a good idea to consider micro-increments within an iteration.

See “Surviving Object-Oriented Projects” for more details on this

approach.1

In the absence of Structured Requirements, incremental delivery

is extremely challenging. Why? It is very difficult to partition

the delivery cycle so increments yield sets of tangible value to

all stakeholders. For non-structured projects, increments are

often assumed to comprise of sets of technical components.

This invalidates one of the primary motivations for incremental

delivery in the first place: Ensuring project managers can measure

completeness and validate the system in segments, with each

segment offering value to business stakeholders. Increments based on

Structured Requirements allow this to happen; whereas, segmenting

increments around technical components, as is the case with non-

structured or traditional approaches, means interdependencies often

lead to one large development cycle, in effect, one large increment.

This leads to significant risk, as it is back to a pure-play waterfall

approach with all of the associated disadvantages.

1“Increments and Iterations,” Alistair Cockburn, Addison-Wesley, 1998.

17

Here is a suggested approach for grouping structured requirements

into iterations:

1. Prioritize the requirements by business importance.

2. Prioritize the requirements by technical difficulty. You should

involve the technical architects and have them review each

structured requirement.

3. Group related requirements into packages.

4. Prioritize the delivery of each package.

5. Keep duration of iteration to approximately four to eight

calendar weeks, if possible (this applies if you are in an agile or

iterative-based environment).

6. If longer than eight weeks, then there is higher risk that the

architecture and/or estimations are flawed.

7. Within the project plan, schedule the “most difficult” and

highest-business-priority iterations first, as these will incur the

most risk and are most important to the business.

Estimate the project plan

When performing estimation, list all of the requirements and

scenarios against components in a tabular format. (It is easy to do

with Optimal Trace’s automatically generated documentation.)

The objective is to cross-reference requirements against the current

components (if modifying an existing system) or against the

anticipated new components (if this is a new system initiative).

If using Excel, depending on how many requirements and

components you have, you can use one or multiple Excel sheets. If

the latter is the case, then cross-reference each group of requirements

to a given tab. Then mark against each component whether or not

that requirement affects it. Correlate each affected component and

estimate the required change in terms of hours. During the first

increment of delivery, it is likely that these estimates will be refined

and solidified, and so on throughout the project.

Optimal Trace provides a pre-canned report that helps estimation. It

is called the Complexity and Completeness report (See Figure 8.)

As you start analysis on new projects, you can run this report and,

by comparing the number of interaction points with production

projects, you will be able to get an indicative sense of the relative

complexity.

Figure 8:
The Complexity and
Completeness Report is one
of a number of Optimal Trace’s
pre-canned report templates.

18

Common project planning questions

How do I handle change during and after the analysis phase?

Bear in mind that requirements evolve during the analysis phase

and even after sign-off. So, for example, we may discover an early-

stage Structured Requirement may need more detail later on in the

analysis. Early-stage requirements typically comprise a simple name

and description and some basic steps. Once you achieve agreement

between the participating stakeholders, you typically define more

detail and recognize and capture alternate scenarios. The final

iteration of the analysis phase should result in requirements that

have been prioritized, have value to the customer and have enough

detail that they can be implemented by a development team. At

this stage, all stakeholders are positioned to proceed and sign-off is

significantly easier.

Important for business analysts and project managers, this

approach to requirements management makes documentation

extremely reliable. Disputes about what was signed off rarely arise

because the project data is unambiguously set out at every stage in

documentation in the format most suitable for each stakeholder.

The table below outlines some sample metrics recorded during a

typical analysis phase.

Checkpoint questions to ask before sign-off and after each iteration:

>> How many requirements have you defined?

>> How many alternative scenarios exist?

>> Have you only considered the main success scenarios or have

you covered alternate flows too?

>> How many steps are in each main success scenario?

>> Have you identified non-functional requirements?

Even after sign-off and after the first iterations of delivery have

begun, it is not unusual to discover aspects of the requirements

that are incomplete or need further clarification or refinement. An

acceptable level of change would be +/- 10 percent after sign-off.

Typically, clarification queries will emanate from the development

or QA team, which can now address the task of developing the test

specifications and test plan.

Baselining in Optimal Trace after each significant change

provides comparison points during the life cycle. Republishing the

requirements documents in Optimal Trace along with the associated

baseline comparison HTML report creates a tight communication

loop. Finally project managers, analysts and all stakeholders should

register for e-mail notifications on changes to specific aspects of the

project of direct interest to them. This gives high visibility to all

concerned stakeholders into aspects of the project of direct interest.

Analysis Phase

Number of high-level requirements 18 26 29

New requirements discovered N/A 11 3

Requirements dropped or deemed out of scope N/A 3 2

Avg. number of alt. scenarios per requirement 0 4 7

Avg. number of steps per requirement 2 12 20

Avg. number of NFRs per requirement 0 2 4

Iteration 1 Iteration 2 Iteration 3

Sample metrics recorded during a typical analysis phase.

19

How do I control new releases and what is the best strategy for handling

maintenance releases?

Optimal Trace projects can be baselined to create a “line in the

sand” so that incremental changes to a system are easy to track and

manage. Alternatively, new projects can be cloned from the original

project, making it easy to kick off similar projects or new releases of

an existing system. Optimal Trace also enables multiple projects to

be linked to each other. In this way, projects (each equivalent to a

release) can be cross-referenced and managed.

There are two options in Optimal Trace for handling maintenance

releases:

1. Handle maintenance releases as separate projects.

2. Handle maintenance changes using baselines.

Which approach you use is normally dictated by:

>> the degree of change

>> the size of the maintenance release

>> the number of roles involved (QA, development project

manager).

As a rule of thumb, if the maintenance scenario involves a relatively

high level of additional change to the original project, then having

a dedicated project which optionally links back to the original

project elements makes the most sense. In this context, anything

above a 15 percent deviation within the most significant Structured

Requirements justifies a new project.

How do I avoid over-engineering?

As outlined above, Optimal Trace’s process of narrowing down each

business driver into its constituent Structured Requirements and

associated steps, alternate flows and branches ensures complete and

accurate scoping of the project. This avoids the risk of vague or

ambiguous requirements that lead to over-engineering.

By fleshing out the goals and requirements with the business user,

your system will be fully expounded before design work is started. In

this way, you fully capture the business users’ needs and map them

into the final system architecture, design and development without

missing anything or extending the project beyond the necessary

scope.

How do I avoid scope creep?

Iteration of the Structured Requirements with the business user

yields a complete set of requirements for the system. Optimal Trace

helps you manage scope creep easily by tracking all amendments

and changes. Optimal Trace’s automatic change tracking facility

and generation of suspect links highlights the extent of change,

one iteration to the next (enabling the business analyst or project

manager to immediately identify trouble spots), and also indicate

the impact that amendments and changes will have on the overall

system. Optimal Trace can also automatically notify you of changes

to particular aspects of the project by e-mail with links to the

changes involved. All of this easy-to-use functionality gives full

visibility of the system at all times, as teams collaborate and evolve

the system requirements.

How do I avoid rework?

Inaccurate or incomplete requirements cause late-cycle problems

that often require expensive reworking. By capturing a complete and

accurate set of system requirements early in the development life

cycle, you can put projects on the right footing as soon as possible.

All project work is traceable to a specific step, requirement and

business driver.

How do I control access?

It is important all stakeholders are given a role in determining

the project requirements. Nonetheless, the management of large,

complex projects depends on the ability to separate issues that must

be addressed as opposed to the “nice-to-haves.” Getting the buy-in

of a restricted number of senior domain experts on the business users’

side dramatically helps narrow down large projects to the essential

elements that will deliver on the business need. Other, less directly

involved stakeholders can easily review and submit proposed edits to

the aspects of the project that concern them, online or off-line. This

is the most powerful way to secure accuracy and buy-in throughout

the project life cycle. Manage controlled access to the Structured

Requirements and supporting documentation by limiting access

rights to certain people and offering documentation created as PDFs

more generally.

Optimal Trace’s automatic document generation also allows users

to communicate in the format most comfortable for them. This

simplifies the process of communicating to stakeholders as project

requirements evolve. Particularly helpful when dealing with large

20

groups, approved edits can be reincorporated into the main project

in a controlled way and with structured version control. Optimal

Trace makes managing project edits and communicating project

status a lot easier, and a lot more reliable. The use of custom

properties and full logical complex querying means the project

can be easily sorted (based on high-risk, priority, completed, etc).

Optimal Trace gives a better, more flexible view of project data and

as a result, prioritization, reporting and tracking are made much

easier.

How do I relate requirements to design and build?

It is vital the system design and build are traced directly from

the original business requirements. Business analysts and project

managers can work with technical staff to map those requirements

into appropriate components or system interfaces and help identify

suitable business objectives within a given iteration. In building out

the architecture and design plan, each requirement and its associated

elements are mapped to the design plan. To assure maximum

efficiency and project success, trace every piece of design work to a

requirement or one of its elements (alternate flow, NFR, etc.) and

vice versa.

An absence of traceability indicates there may be potential issues

with the accuracy of the requirements, or the team is building

something outside the system’s scope. Tracing at this stage in the

process is plainly an invaluable tool in identifying shortfall/overlap

in the design plans.

Optimal Trace’s integrations with many leading development

tools enable a seamless mapping of requirements through to the

development environment. By comprehensively describing the

system with a set of Structured Requirements, associated NFRs and

other artifacts (screenshots, etc.), customers and business users do

not have to get involved with aspects of the system’s design. This

is a good thing, because UML modeling tools are primarily used

by technical teams and can be intimidating to the non-technical

user. Also, representations of the project in development tools do

not completely reflect actual requirements. They help visualize

the system but do not capture business rules or represent scenarios,

sub-requirement elements or non-functional requirements. These

modeling tools are effective for diagrams but are not text-friendly or

useful for requirements management.

Testing and validation

One of the biggest challenges facing QA and test leads is the

lack of effective tracing from business and system requirements

to the actual test requirements, and vice versa. This potential for

disconnect between QA and business stakeholders has implications

for development but even more so for QA and test. It can be directly

attributed to a lack of Structured Requirements coming out of the

analysis phase.

A second challenge is the duplication of effort that is seen quite

commonly with respect to the various activities of QA teams.

Traditional requirements are usually assertion-based; these are

statements of fact, like statements of business rules. For QA

to interpret such requirements effectively and turn them into

something that can be coherently tested and measured is difficult,

time-consuming and creates duplication. Stating a set of project

requirements completely in a verb-based, goal-oriented manner

makes it immediately easier for QA/test to see what tests are

required to ensure the system delivers on primary business drivers.

Testing and QA also tend to happen very late-cycle, long after the

system “concrete” has been set. This is the classic tale with which

we are all well familiar. The QA lead reports performance issues

to project managers and gets short shrift because it is too costly

and inconvenient to consider re-architecting so late in the cycle.

These issues result from QA being siloed and not given the priority

necessary for full, effective and timely intervention.

Complete capture and clear communication of project requirements

in a structured way go a long way toward connecting analysis,

development and test, introducing QA issues earlier in the

development cycle and reducing duplication of work. A set of system

requirements which defines functional and non-functional scope

makes system validation and test much easier and more accurate.

Create a specific test project

Initially you should create a separate Optimal Trace project for your

test plan. While relating to the requirements project, test projects

are structurally different since they have a testing-oriented package

structure and different custom properties. Create a test project from

the QA Project Template that ships with Optimal Trace. Over time,

you will also probably modify this template to add specific fields

relevant to your own environment.

21

Test projects will tend to have trace links back to the original

business-facing project thereby aligning them with the original

requirements project. QA stakeholders should also consider

subscribing via e-mail notifications to changes on specific parts of

the business project that they are testing. This makes it possible

to review any changes applied and modify associated test cases.

Optimal Trace’s automatic generation of suspect links resulting from

project changes also facilitates immediate reviews, allowing impact

analysis between the test and requirements projects.

Develop test specifications based on requirements

Structured Requirements comprise scenarios and each scenario

equals one functional test case. Always ensure the complete path

of every requirement has an associated test case. In this way, the

functional test specification comprises all scenarios.

Also, all non-functional requirements associated either with the

project or with specific requirements should be written as a unit or

system test. Test data should be associated with each resulting test.

NFR qualities at the system level generally become system tests;

NFR constraints become manual tests.

Generate the initial test specification

Optimal Trace can automatically generate the basis for a complete

test plan based on the Structured Requirements, alternate scenarios,

NFRs, etc.

To do this, Optimal Trace analyzes the set of Structured

Requirements with all its steps, scenarios and descriptions and

associated NFRs and from this generates a separate test project. This

process automatically itemizes the unique paths within the overall

Structured Requirements and reflects a complete set of test cases to

enable thorough functional testing.

Similarly, a full set of non-functional requirements associated with

the Structured Requirements ensures all system requirements are

carried over to the testing environment for validation.

Looking at the demo project “Order System” that ships with

Optimal Trace, Figure 9 depicts the “Edit/View Order” Structured

Requirement as entered by the analyst and how it maps to a test

project. Running Optimal Trace’s automatic test case generation

from this requirement will yield four tests. The three functional

Figure 9: Structured Requirements mapped directly to test cases.

22

paths (one main path and two deviations) need to be tested and

therefore yield three functional tests. Additionally a single NFR

yields one non-functional or system test.

Add validation and expected result information

The test cases automatically generated from the Structured

Requirements and associated non-functional requirements are the

starting point for establishing the specification. We now need to

look at them from a validation perspective.

Rather than treating the test cases as requirements (e.g., “The

system needs to” or “The user will enter”), we express them in

terms of what the system needs to validate. In other words, the

requirements need to be inverted with validation as the focus.

The test steps generated by the original Structured Requirements

are augmented and enriched by the additional validation focus,

considering test data, etc.

The real goal here is to prime the test pump, increasing the

speed and efficiency by which tests can be generated, often even

before any development has begun. This process allows the tests

to be generated before any parts of the system are built by the

development community. By putting the two sides of the equation,

test and requirements, together earlier in the life cycle, you get

better quality requirements, better quality test cases and aligned

system delivery. This ensures a direct trace from the test process back

to requirements and vice versa.

Optimal Trace users quite often generate tests very early in the

development cycle, perhaps even in the first few weeks of analysis,

to get the sense and scale of what is coming down the pipe and

what may be missed during the early phase. This ensures as many as

possible of the right questions are asked early in the process. Let’s see

how we do this for functional and non-functional tests.

Add validation information to functional tests

To add validation information to the functional tests, you need to

modify the description and add detail to the “expected result” field

for each step. Modifying the description means we are clear as to

what needs to be validated for that step. This takes the form of an

instruction such as “Click New Order” or “Verify that the following

fields are displayed.” Detailing what you expect the result to be

allows you to access pass/fail results (see Figure 10).

Add validation information to non-functional (system) tests

Each non-functional test needs to be fleshed out to provide the

detailed steps that comprise the test. Similar to our functional tests,

the description and expected result house the instructions and pass/

fail criteria.

Store test run results

If using Optimal Trace solely for your testing, without the support of

automated test tools such as Compuware QACenter, you will want to

store the results in the project. To do this, perform the following:

1. Create a custom column for each step.

2. A column in Optimal Trace is a custom property at step level

called “Result.”

Figure 10 : Validation information associated with functional requirements.

Figure 11: Test result information stored in Optimal Trace.

23

Note this is the default in the shipped “Optimal Trace QA Project

Template.” (See Figure 11.)

Now on the test requirement itself, do the following:

1. Create sets of custom fields at a test case level, one set for each

anticipated test run.

2. “Run 1 Data,” “Expected Result 1,” “Actual Result 1” and

“Tester 1.”

Common QA and test-related questions

How do I verify and test requirements for quality and completeness?

The business goals, which have been deeply specified in the early

analysis phase, can be used as the basis of user acceptance testing.

All associated non-functional requirements must also be mapped to

test. Structured Requirements make it easier to capture complete

and accurate system requirements. If these are fully mapped to the

test environment, then the test process will be properly focused

on making sure the system fulfills the business goals and objectives

originally intended.

How do I avoid testing the wrong stuff?

If the testing plan has been generated from the project’s Structured

Requirements, then you won’t test the wrong aspects of the system. It

is important to cover all aspects of the requirements, though, making

sure to test NFRs, alternate scenarios, etc. That way, you’ll be sure to

have a complete test plan and stay on track.

What exactly does Optimal Trace test generation yield?

Test generation in Optimal Trace equates to:

>> “primers” for the test cases, more needs to be done, data, etc.

>> a set of unique paths for each Structured Requirement

>> coverage of associated non-functional requirements

(e.g., qualities and constraints)

>> not crossing functional requirements (do not traverse “branches”)

>> not carrying over custom properties

>> automatically tracing from test back to requirement or vice versa.

It is important to note you are not obliged to use Optimal Trace’s

test generation to create test cases; it is an accelerator. You could

alternatively copy and paste directly from the requirements project.

Figure 12: Test generation results from Optimal Trace.

Figure 13: Test run results associated with a requirement: expected and actual.

Compuware Corporation Corporate Headquarters
One Campus Martius
Detroit, MI 48226

For regional and international office contacts, please visit our web site at www.compuware.com

All Compuware products and services listed within are trademarks or registered
trademarks of Compuware Corporation. Java and all Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
All other company or product names are trademarks of their respective owners.
© 2006 Compuware Corporation 2309 • 9/06

To learn more or demo our product, visit
www.compuware.com/products/optimaltrace

Compuware Corporation (NASDAQ: CPWR) maximizes the value IT brings to the business by helping CIOs more effectively manage

the business of IT. Compuware solutions accelerate the development, improve the quality and enhance the per formance of critical

business systems while enabling CIOs to align and govern the entire IT portfolio, increasing efficiency, cost control and employee

productivity throughout the IT organization. Founded in 1973, Compuware serves the world’s leading IT organizations, including 95

percent of the Fortune 100 compa nies. Learn more about Compuware at www.compuware.com.

Compuware products and professional services—delivering IT value

Conclusion

The paper highlights the real benefits that a Structured

Requirements approach will bring to your projects. A structured and

logical flow framework for requirements capture and management

ensures that projects can be expanded fully and accurately. The

ability to add alternative flows and branches, and attach screenshots

and other artifacts means each project presents a complete picture of

the project and what it needs to achieve.

The ability to trace all project activity back through requirements

to the original business drivers reduces risk throughout the life

cycle. Rework is reduced, QA and test can focus on actual project

deliverables and IT investment is always linked to enterprise-based

benefits.

Most important of all, this approach draws all stakeholders together

in a collaborative process that is easy to communicate, understand

and adopt. This accelerates project sign-off and reduces disputes after

the fact. Primarily, though, it ensures all stakeholders are involved at

an early stage when their contributions are most valuable, radically

improving the chance of the project successfully delivering on the

original business drivers.

When adopting a Structured Requirements approach, it is vital to

apply it thoroughly and diligently. The tips outlined here should help

you in securing project success, whether you are involved in business

analysis, project management, QA and test, coding or architecting.

At a higher level, financial control, portfolio management and

corporate compliance are all made easier as a result. The Structured

Requirements approach enabled by Optimal Trace has something to

offer everyone involved in IT investment.

Fergal McGovern is the originator of, and Product

Manager for Optimal Trace, Compuware’s leading

Requirements Definition and Management solution.

He has spent many years applying structured

requirements techniques to IT projects, aiming for

improved project delivery and success.

He has held senior roles with Ebeon, Iona Technologies

and various Fortune 1000 companies. Fergal is a leading

commentator and practioner on Requirements Strategy.

